Fast Spectral Clustering via the Nyström Method
نویسندگان
چکیده
We propose and analyze a fast spectral clustering algorithm with computational complexity linear in the number of data points that is directly applicable to large-scale datasets. The algorithm combines two powerful techniques in machine learning: spectral clustering algorithms and Nyström methods commonly used to obtain good quality low rank approximations of large matrices. The proposed algorithm applies the Nyström approximation to the graph Laplacian to perform clustering. We provide theoretical analysis of the performance of the algorithm and show the error bound it achieves and we discuss the conditions under which the algorithm performance is comparable to spectral clustering with the original graph Laplacian. We also present empirical results.
منابع مشابه
PSC: Parallel Spectral Clustering
Spectral clustering algorithm has been shown to be more effective in finding clusters than some traditional algorithms such as k-means. However, spectral clustering suffers from a scalability problem in both memory use and computational time when the size of a data set is large. To perform clustering on large data sets, we investigate two representative ways of approximating the dense similarit...
متن کاملScalable Kernel K-Means Clustering with Nystrom Approximation: Relative-Error Bounds
Kernel k-means clustering can correctly identify and extract a far more varied collection of cluster structures than the linear k-means clustering algorithm. However, kernel kmeans clustering is computationally expensive when the non-linear feature map is highdimensional and there are many input points. Kernel approximation, e.g., the Nyström method, has been applied in previous works to approx...
متن کاملNyström Sampling Depends on the Eigenspec- Trum Shape of the Data
Spectral clustering has shown a superior performance in analyzing the cluster structure. However, its computational complexity limits its application in analyzing large-scale data. To address this problem, many low-rank matrix approximating algorithms are proposed, including the Nyström method – an approach with proven approximate error bounds. There are several algorithms that provide recipes ...
متن کاملExtending the SACOC algorithm through the Nyström method for dense manifold data analysis
Data analysis has become an important field over the last decades. The growing amount of data demands new analytical methodologies in order to extract relevant knowledge. Clustering is one of the most competitive techniques in this context. Using a dataset as a starting point, clustering techniques aim to blindly group the data by similarity. Among the different areas, manifold identification i...
متن کاملDensity-Weighted Nyström Method for Computing Large Kernel Eigensystems
The Nyström method is a well-known sampling-based technique for approximating the eigensystem of large kernel matrices. However, the chosen samples in the Nyström method are all assumed to be of equal importance, which deviates from the integral equation that defines the kernel eigenfunctions. Motivated by this observation, we extend the Nyström method to a more general, density-weighted versio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013